On the heights of totally p-adic numbers

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On Fields of Totally S-adic Numbers

Given a finite set S of places of a number field, we prove that the field of totally S-adic algebraic numbers is not Hilbertian. The field of totally real algebraic numbers Qtr, the field of totally p-adic algebraic numbers Qtot,p, and, more generally, fields of totally S-adic algebraic numbers Qtot,S, where S is a finite set of places of Q, play an important role in number theory and Galois th...

متن کامل

Derived p-adic heights

2 Derived p-adic heights 2.1 Derived heights for cyclic groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2.2 Comparison of pairings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 2.3 Compatibility of the derived heights . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 2.4 Derived p-adic heights . . . . . . . . . . . . . . . . . . . . . . . . . ....

متن کامل

Notes on p-adic numbers

as one can check using induction on l. The usual absolute value function |x| satisfies these conditions with the ordinary triangle inequality (4). If N(x) = 0 when x = 0 and N(x) = 1 when x 6= 0, then N(x) satisfies these conditions with the ultrametric version of the triangle inequality. For each prime number p, the p-adic absolute value of a rational number x is denoted |x|p and defined by |x...

متن کامل

d-VFCSR or vectorial FCSR constructed on totally ramified extension of the p-adic numbers

In this paper, we introduce a vectorial conception of dFCSRs to build these registers over any finite field. We describe the structure of d-vectorial FCSRs and we develop an analysis to obtain basic properties like periodicity and the existence of maximal length sequences. To illustrate these vectorial d-FCSRs, we present simple examples and we compare with those of Goresky, Klapper and Xu.

متن کامل

p-adic heights of Heegner points and Λ-adic regulators

Let E be an elliptic curve defined over Q. The aim of this paper is to make it possible to compute Heegner L-functions and anticyclotomic Λ-adic regulators of E, which were studied by Mazur-Rubin and Howard. We generalize results of Cohen and Watkins and thereby compute Heegner points of nonfundamental discriminant. We then prove a relationship between the denominator of a point of E defined ov...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal de Théorie des Nombres de Bordeaux

سال: 2014

ISSN: 1246-7405,2118-8572

DOI: 10.5802/jtnb.861